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Fuel Fabrication Status

• Fabrication of all metal fuel slugs complete
• Rodlet and capsule welding parameters being

refined
– Target: 100% acceptance

» Small size of rodlet specimens causes some problems with
repeatability

» QA acceptance ~90%
– Slight distortion of capsule end caps
– Corrective actions pursued for both issues

• On target for December 2002 insertion



Metal Fuel Characterization
• Microstructural characterization proceeding
• Example: Pu-10Np-40Zr
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Review of Pu-bearing IMF and MOX

• ‘Older’ work
– Fairly large database
– Good work on ZrO2, MgO-based fuels

• More recent Work
– Paper studies and fabrication
– No irradiation testing

• Advanced MOX
– SUPERFACT experiment



Older IMF Work in the U.S. (pre-1970)

• Relevant past work mostly related to ‘spike’ elements for Pu
burning in thermal systems for the Plutonium Utilization
Program

– Thermal Spectrum Fuel Irradiation Tests
» Al-Pu alloy fuel
» PuO2/ZrO2
» PuO2/MgO

• ‘Phoenix’ whole core demonstrations (reactivity control using
240Pu)

– Materials Test Reactor (MTR, 1958)
– Plutonium Recycle Test Reactor (PRTR) + MOX (1963)

• Bettis Atomic Power Laboratory
– ZrO2-UO2 fuels for Shippingport reactor (also CaO-ZrO2, BeO, Al2O3,CeO2)

• Miscellaneous fuels in thermal spectrum
– PuN, PuC, PuO2, PuO2/graphite, PuO2 silicate glass
– Isotope targets, often Al matrix dispersions



Al-Pu Alloys

• Al-Pu dispersions similar to early Al-U research
reactor fuel

– Al-Pu eutectic at 15.6 wt% (~2 at%) Pu, 640°C
– Hypoeutectic fuels ideal for thermal burning

» 3.35 wt% Pu content gives 95 vol% Al-0.27 wt% Pu matrix
– Hypereutectic systems also studied

• Fabrication typically by extrusion/coextrusion
• Typically operate at high power density (~100

kW/m)
• Very high Pu burnup possible (90% FIMA)
• Pu-Al segregation must be controlled on

fabrication
• Fuel centerline temperature limited to <400°C
• Corrosion resistance improved by Ni, Si, Ti



Al-Pu Alloy Irradiation Testing

• PRTR (Plutonium Recycle Test Reactor)
– Goal: Suitability of Al-Pu for use in power reactors
– 75 elements (1500 rods) 8.26 cm dia. x 2.51 m, 3 failures (1962)
– Zircalloy cladding

» Fuel/clad gap required due to aT mismatch
– Powers to 39 kW/m; fuel center temps. to ~400°C

» MTR/ETR capsule tests to 520°C, stable m-structure
– Maximum average burnup was 65%/ peak 87%

• MTR (Materials Test Reactor)
– Full ‘Phoenix’ core loading in 1958
– Aluminum clad Al-14 wt% Pu
– Plate-type fuel
– Burnup to 75% FIMA

• EBWR (Experimental Boiling Water Reactor)
– 10 rods, 3.35 wt% plutonium (8 and 26 wt% 240Pu)
– 2 wt% Ni

• USAEC HW-69200, IDO-16508, HW-70158, HW-SA-2425



ZrO2-PuO2 Fuels

• Plutonium Utilization Program
• Zircalloy clad 1.44 cm OD specimens in ETR
• 4 ZrO2-1.93 wt% PuO2, 4 ZrO2-9.76 wt%PuO2

– Cubic + monoclinic phases
• Irradiated in ETR

– Power: 29-95 kW/m
– Temperature: 1400 – 3700°C (±20%)
–  Burnup: 8 – 43%

• One failure at 95 kW/m
– 1/5 of fuel molten
– No loss to coolant

• USAEC HW-SA-3128

86 kW/m, Tmax ~3400°C, 10% BU



MgO-PuO2 Fuel Irradiation Testing

• Zircalloy clad specimens in ETR
– 4 MgO-2.71 wt%Pu, 4 MgO 12.95 wt% Pu, 1.44 cm OD
– Sintered 1600°C for 12 hr. in He to 86-92% density
– Peak power 59-165 kW/m, burnup 5-72%
– Peak Temperatures 700 – 2450°C (±20%)

» Central void and major Pu redistribution at 165 kW/m
• Zircalloy clad specimens in PRTR

– 19 1.43 cm OD x 251 cm rods, 2.1 wt% PuO2
– Swage compacted –6 mesh MgO + -325 mesh PuO2
– Failure 3 hours after full power (60 MW)

» Irradiation continued 8 days, 23 cm fuel lost
– Cause: high local temps, F contamination of Pu, water in

MgO caused cladding breach.
• USAEC HW-SA-3127, USAEC HW-76300



MgO-PuO2 Fuel Irradiation Testing

165 kW/m,
2450°C,
72% burnup



More recent work in the U.S. (1970 +)

• Idaho National Engineering and Environmental
Laboratory (INEEL)

– Analysis of material properties, neutronics, and fuel
performance of Y-(Zr,Pu)O2 pellet fuels (1994)

• Los Alamos National Laboratory (LANL)
– Neutronics calculations, fabrication of small quantity of

CaO-(Pu, Zr)O2 pellets, Xe2+  and I+ ion beam irradiation
(late 1990’s)



IMFs Proposed at May 02 FDWG Meeting

• ZrO2 solid solution
• MgO-based CerCer
• Zr-matrix Cermet
• SiC-based CerCer
• Ni-Al CerMet

• Also consider Advanced MOX



ZrO2 solid solution

• Positive aspects
– Good database

» Out-of-pile data
» ‘Old’ irradiation data
» Will soon have new irradiation data with erbia poison (PSI)
» Current indications of good irradiation performance

– Easy to incorporate burnable poisons in solution
• Potential problems

– Thermal conductivity ~half of UO2
» Reported to be stable with irradiation
» Power profile shifts to pellet center with Pu depletion
» Possible solution – annular or filled annular pellets

– Recycle (?)
» Slow dissolution, poor solubility in HNO3
» Possible solution in pyroprocessing?



ZrO2 Solid Solution

C. Degueldre (2001)

Thermal conductivity of
Zirconia-based fuels is
low, but has small
dependence on
temperature



MgO matrix fuels

• Positive aspects
– Some database

» Out-of-pile data
» MATINA fast-spectrum data on MgO, MgO-UO2 (1.2 at%

burnup)
» ‘Old’ irradiation data from ETR, PRTR

– Good thermal conductivity
» Indication of 40~60% decrease with neutron irradiation

– Resistant to melting on high-T accidents (Tm = 2830°C)
– Recycle - dissolution shouldn’t be a problem (?)

• Potential problems
– Solubility in coolant water

» PRTR experience
» Possible fix – determine mechanism.  May be able to ‘alloy’

to increase corrosion resistance
– Volatility at high temperatures



Zirconium matrix dispersion fuels

• Positive aspects
– Some database on similar fuels (stainless steel-based)
– Fabrication of pins uses fast, simple technique (extrusion)
– Very low particle volume loading

» 10-20 vol.% (depending on poison, solid solution)
» Should be capable of very high burnup
» Cold fuel - can operate at high power density if required

• Potential Problems
– Particle coating of (Y-Zr,Pu)O2 likely to be required
– Large amount of zirconium in process – impact on recycle
– Commercial sector acceptance of novel fuel



Dispersion Fuel Performance
(stainless steel matrix )

• Heavy metal burnup of 93% enriched fuel
• Plate-type fuel
• Data from UKAEA reports
• Performance depends on microstructure and temperature



SiC matrix fuel

• Positive aspects
– Good thermal conductivity
– High melting 2700°C (sublimation 2250°C) temperature
– b-SiC appears to be stable under neutron and H.I. Irradiation
– Reported good corrosion resistance in acidic and neutral

solutions at 290° -320°C
– Some data relevant to LWR fuel

» Fabrication with CeO2 (Al2O3 and Y2O3 sintering aids, AECL-1999)
» Thermal conductivity measurements of SiC- CeO2, neutron

irradiated pyrolitic SiC
» Some recent irradiation data on encapsulated UO2 pellets in HFR
» 72 MeV iodine bombardment produced no swelling (AECL)

• Potential problems
– Recycle may not possible with HNO3-based process



Thermal conductivity of SiC matrix fuel

• l= 30-100 W m-1 K-1 at RT
• 5-15 fold reduction at
fluence > 2x1024 n/m2

• Dl = f(T)

20.9

41.8

62.8

W m-1 K-1

Price (1973)



Examples of Estimated Fuel Centerline Temperatures
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Standard 17x17 PWR rod
geometry:

Clad OD = 0.914 cm
Clad ID = 0.886 cm
Fuel OD = 0.784 cm
Tcoolant = 305°C

16 vol.% SiC, MgO, Zr
matrix dispersions.  Best
guess at lT.

PWR conditions:
Avg. power 18-20 Kw/m
Peak power 43-50 kW/m

Y-ZrO2 Tmelt



Advanced Mixed Oxide Fuels

Superfact experiment – fast reactor fuel in Phénix

Babelot, JRC-ITU-TN-99/03 (1999)

Preparation: 1984-1986

Irradiation: 1986-1988, 324 EFPDs

PIE: 1989 -1992



Superfact Experiment
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Advanced Mixed Oxide Fuel

Babelot, JRC-ITU-TN-99/03 (1999)
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• Experimental work on thermal conductivity, oxygen potential, fabrication.

• Basis for extrapolation to LWR fuels.



Planning for Tier-1 Fuel Development

Short-term: Provide sufficient technical
information by the end of FY06 to DOE and/or
Congress on the feasibility of fuels for LWR
transmutation to support a decision on
program continuation.

Long-term: Development and deployment of a
fuel cycle designed for rapid destruction of Pu
and potentially Np and Am in commercial light
water reactors.



Assumptions

• Deployment should begin within 12-17 year time period
(FY15-20) if possible

– Low risk technology
• Nonproliferation is a key consideration

– Must mesh with fabrication, inspection, and handling
• Fuel must be compatible with a demonstrated recycle
process
• Deployment is in commercial reactors

–  Minimum of new requirements on operations
» No additional power or handling restrictions
» Reactor safety case not substantially affected

–  Demonstrated accident performance at least as good as UO2
–  Fuel performance as least as good as UO2

» Should be an economic incentive for operators



‘Five-Year’ Fuel Development Plan Goals

• Provide data for decision in approximately five-
years in these areas:

» Fuel performance
» Fuel recycle (Fabrication)
» Core physics
» Core safety
» Ability to license for use in commercial LWRs
» Commercial operator acceptance

• Sort out issue of proliferation resistance and
implications on commercial deployment ASAP

• Involve commercial operators/NRC in fuel
development process



Long-term IMF Development

• Goal to deploy ASAP drives early schedule

• Deployment possible ~ CY2020

– Early start on irradiation testing – no substitute

– Requires steady program

– Depends heavily on cooperation of the fuel

• Requires some risk

– Decision points are not optimum - often making technical
decisions without complete data

–Probably requires transient testing



Long-term IMF Development



Proposed LWR Fuel ‘Five-Year’ Plan

• Evaluate fuel candidates (FY03)
• Establish commercial/NRC contacts (FY03)
• Fabrication of first fuels for LWR-1 early insertion (FY03)
• Out-of-pile characterization (FY03)
• Advanced fuel fabrication development (FY03 – FY08 )

– Authorization and equipment upgrades (FY03)
– Fabrication experiments on advanced IMFs for LWR-1 (FY04)

• Irradiation tests (ATR- FY04)
– LWR-1 scoping test

» Instrumented test facility
• Relatively short duration test
• Power slightly > than prototypic

» 2-3 IMF + MOX (AMOX)
» Insertion beginning FY04
» Testing possibly continuing with advanced IMFs
» First PIE mid FY06

– LWR-2 prototype LWR testing to follow in ATR (FY07)



Proposed LWR Fuel Plan: Year One
• Spend first 9 months performing initial screening

studies/brainstorming (October ’03 – June ’03).
– Preliminary fuel design concepts
– Fabrication
– Fuel performance
– Recycling flowsheets/ranking
– Proliferation resistance (ability to incorporate features)
– Physics analysis
– Core accident performance
– Operator acceptance/NRC licensing

• Develop fuel selection criteria
• Objectively rank fuels against criteria
• Select 2-3 IMF for irradiation testing (+ MOX reference and

AMOX (?))
• Begin fabrication and irradiation test planning for FY04

insertion



Impact of LWR fuel on Tier 2 Fuel Development

• Tier 2 fuels require a longer lead time for deployment due to:
– Lack of properties data
– New fabrication technology required
– Lack of fuel performance data
– Difficulties in fast-spectrum testing
– Undefined deployment scenario and operating conditions

• Tier 2 development should continue to achieve deployment ~ 2030
• Some synergy with LWR fuel development may result in cost

savings
– Scientific and technical personnel
– Pu fabrication equipment and laboratory facilities
– Thermal spectrum irradiation testing
– PIE equipment
– Transient testing

• Program should continue with some modifications
– Domestic fast-spectrum test space
– Potentially fewer fuel choices



ATR Fast Flux Booster
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Advanced MOX

• Probably (U, Pu, Np)O2  (low Am content)
• Shorter lead time for deployment due to:

– Better properties database (Superfact)
– Similarity to MOX

» Some fuel performance data (Superfact)
– Need for transient testing ?

• Deployment may be possible 2016 ~ 2017
– One prototype developmental irradiation test prior to LTAs
– LTA irradiations drive schedule beyond 2008

• Same questions about proliferation resistance
• Should be included in LWR-1 irradiation test



AMOX Fuel Development Plan



Conclusions

• Does not appear to be a ‘perfect’ choice of IMF
• Need to provide preliminary data in these areas:

» Fuel performance
» Fuel recycle (Fabrication)
» Core physics
» Core safety
» Ability to license for use in commercial LWRs
» Commercial operator acceptance

• Choice of fuel heavily dependent on current state
of technology

– Could be ready for implementation in 12-17 years
– Some risk involved in developing new fuels

» IMF offers more rapid in-reactor destruction rate than
AMOX

» Advanced MOX easier, faster to implement


